Features

- Surface Mount Devices
- Lead free device
- Surface Mount packaging for automated assembly
- Agency recognition: UL

Applications

Almost anywhere there is a low voltage power supply, up to 30V and a load to be protected, including:

- Computer mother board, Modem. USB hub
- PDAs & Charger, Analog & digital line card■ Digital cameras, Disk drivers, CD-ROMs,
 - Sea & Land

Performance Specification

SMD1210 Series

Model	Marking	V _{max}	I _{max}	I _{hold}	I _{trip}	P_d	Maximum Time To Trip		Resistance	
Wiodei	Warking	(Vdc)	(A)	@25℃ (A)	@25℃ (A)	Max. (W)	Current (A)	Time (Sec)	Ri _{min} (Ω)	R1max (Ω)
SMD1210-005	αΑ	30.0	100	0.05	0.15	0.6	0.3	1.50	2.800	50.000
SMD1210-010	αВ	30.0	100	0.10	0.30	0.6	0.5	0.60	0.800	15.000
SMD1210-020	α C	30.0	100	0.20	0.40	0.6	8.0	0.02	0.400	5.000
SMD1210-035	α D	6.0	100	0.35	0.75	0.6	8.0	0.20	0.200	1.300
SMD1210-050	α F	13.2	100	0.50	1.00	0.6	8.0	0.10	0.180	0.900
SMD1210-075	α G	6.0	100	0.75	1.50	0.6	8.0	0.10	0.070	0.400
SMD1210-110	α H	6.0	100	1.10	2.20	0.6	8.0	0.30	0.050	0.210
SMD1210-150	α L	6.0	100	1.50	3.00	0.6	8.0	0.50	0.030	0.110

Ihold = Hold Current. Maximum current device will not trip in 25 ℃ still air.

Itrip = Trip Current. Minimum current at which the device will always trip in 25°C still air.

Vmax = Maximum operating voltage device can withstand without damage at rated current (Imax).

Imax = Maximum fault current device can withstand without damage at rated voltage (Vmax).

Pd = Maximum power dissipation when device is in the tripped state in 25 ℃ still air environment at rated voltage.

Rimin/max = Minimum/Maximum device resistance prior to tripping at 25 ℃.

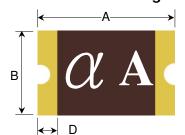
 $R1_{max}$ = Maximum device resistance is measured one hour post reflow.

CAUTION: Operation beyond the specified ratings may result in damage and possible arcing and flame.

Environmental Specifications

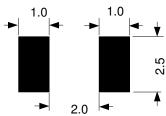
Test	Conditions	Resistance change
Passive aging	+85℃, 1000 hrs.	±5% typical
Humidity aging	+85℃, 85% R.H. , 168 hours	±5% typical
Thermal shock	+85 °C to -40 °C, 20 times	±33% typical
Resistance to solvent	MIL-STD-202,Method 215	No change
Vibration	MIL-STD-202,Method 201	No change
Ambient operating conditions:	- 40 ℃ to 85 ℃	
Maximum surface temperature of th	e device in the tripped state is 125 ℃	

AGENCY APPROVALS: U.L pending


I_{hold} versus temperature

IIOIG	•									
Model	Maximum ambient operating temperature (Tmao) vs. hold current (Ihold)									
Wiodei	-40℃	-20℃	0℃	25℃	40℃	50℃	60℃	70℃	85℃	
SMD1210-005	0.08	0.07	0.06	0.05	0.04	0.04	0.03	0.03	0.02	
SMD1210-010	0.16	0.14	0.12	0.10	0.08	0.07	0.06	0.05	0.03	
SMD1210-020	0.29	0.26	0.22	0.20	0.16	0.14	0.13	0.11	0.08	
SMD1210-035	0.47	0.45	0.40	0.35	0.33	0.28	0.24	0.21	0.18	
SMD1210-050	0.76	0.67	0.58	0.50	0.43	0.40	0.36	0.32	0.28	
SMD1210-075	1.00	0.97	0.86	0.75	0.64	0.59	0.54	0.48	0.40	
SMD1210-110	1.69	1.48	1.29	1.10	0.88	0.76	0.65	0.57	0.43	
SMD1210-150	2.13	1.92	1.71	1.50	1.26	1.14	1.01	0.89	0.71	

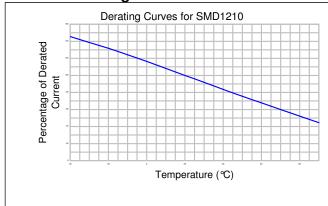
Construction and Dimension (Unit:mm)


Model	Α			В	(D		
Model	Min.	Max.	Min.	Max.	Min.	Max.	Min.	
SMD1210-005	3.00	3.43	2.35	2.80	0.30	0.80	0.30	
SMD1210-010	3.00	3.43	2.35	2.80	0.30	0.80	0.30	
SMD1210-020	3.00	3.43	2.35	2.80	0.30	0.80	0.30	
SMD1210-035	3.00	3.43	2.35	2.80	0.30	0.80	0.30	
SMD1210-050	3.00	3.43	2.35	2.80	0.30	0.80	0.30	
SMD1210-075	3.00	3.43	2.35	2.80	0.30	0.80	0.30	
SMD1210-110	3.00	3.43	2.35	2.80	0.30	0.80	0.30	
SMD1210-150	3.00	3.43	2.35	2.80	0.60	1.40	0.30	

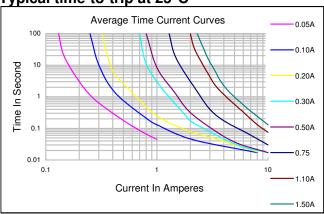
Dimensions & Marking

Recommended pad layout (mm)

Termination pad characteristics


Terminal pad materials: Tin-Plated Nickle-Copper or Gold-Plated Nickle-Copper

Terminal pad solderability: Meets EIA specification RS186-9E and ANSI/J-STD-002 Category 3.


Rework

Use standard industry practices, the removal device must be replaced with a fresh one.

Thermal derating curve

Typical time-to-trip at 25 ℃

NARNING:

- · Use PPTC beyond the maximum ratings or improper use may result in device damage and possible electrical arcing and flame.
- · PPTC are intended for protection against occasional over current or over temperature fault conditions and should not be used when repeated fault conditions or prolonged trip events are anticipated.
- Device performance can be impacted negatively if devices are handled in a manner inconsistent with recommended electronic, thermal, and mechanical procedures for electronic components.
- · Use PPTC with a large inductance in circuit will generate a circuit voltage (L di/dt) above the rated voltage of the PPTC.
- · Avoid impact PPTC device its thermal expansion like placed under pressure or installed in limited space.
- · Contamination of the PPTC material with certain silicon based oils or some aggressive solvents can adversely impact the performance of the devices. PPTC SMD can be cleaned by standard methods.
- · Requests that customers comply with our recommended solder pad layouts and recommended reflow profile. Improper board layouts or reflow profile could negatively impact solderability performance of our devices.